Bioenergy Day Recognizes Importance of Biomass

bioenergydayYesterday was the Second Annual National Bioenergy Day, and more than 40 facilities and organizations throughout the U.S. and Canada opened their doors to show folks the benefits of using woody biomass for heating and electrical power production.

U.S. Department of Agriculture Secretary Tom Vilsack has continued to support bioenergy’s role in protecting the health of forests on federal lands, saying, “Renewable wood energy is part of the Obama Administration’s ‘all of the above’ energy strategy. The Forest Service works with its partners to support the development of wood energy projects that promote sound forest management, expand regional economies and create new rural jobs.”

“The continuation of National Bioenergy Day into a second year is truly exciting. We are grateful to our sponsors, particularly the U.S. Forest Service, for their dedication to raising awareness about the role of bioenergy in communities across the nation,” said Bob Cleaves, President and CEO of Biomass Power Association. “Today, all across the country, people are learning about bioenergy and how it helps local economies and forests.”

Some of the National Bioenergy Day sponsors include Biomass Power Association, U.S. Forest Service, Plum Creek, Pellet Fuels Institute, U.S. Industrial Pellet Association, and the Biomass Thermal Energy Council. You can learn more at www.bioenergyday.com.

Pacific Ag Bales Bundles of Energy

Bill Levy Pacific AgLast week Abengoa’s cellulosic ethanol biorefinery went online and is expected to produce 25 million gallons of advanced ethanol per year as well as 21 MW of bioenergy. But how exactly does the corn and wheat residue get from the fields to the biorefinery in a economical and efficient way? Enter Pacific Ag.

The company was founded by Bill Levy in 1998 and began by baling residue for growers and using the biomass for animal feed both in the U.S. and internationally. It was a natural progression for Pacific Ag to get involved in cellulosic production in the U.S. and to become a major supplier to the industry.

I asked Levy to talk about their residue removal model. He noted that since their inception, they have always focused on having a balanced residue program for growers and they are finding value for those products for them. So taking their successful model from the Northwest and applying it to the Midwest was a good fit. “The fundamentals of having residue removed on a timely basis and in a sustainable way is really the same,” explained Levy. Today they are in California, North Carolina, Iowa, Kansas and he says they have innovated to become “energy balers” because of the new bioenergy market for residue.

There has been talk about the best biomass model for the biofuels industry. I posed this question to Levy and he explained how they have refined their model to be financial feasible. “We have tried to make it easy for growers to be part of the program by taking care of the harvest, we own the machinery, we schedule the harvest or the removal of the residue, or energy crop with the grower and then we provide them with an income stream for that product,” Levy answerPacific Ag Hugoton Kansas teamed. “It’s very important that we have the size that allows us to invest in that equipment and a lot of times it doesn’t make sense financially for a grower to to invest in that harvest equipment just to harvest the residue.” Pacific Ag is the largest purchaser and owner of baling equipment in the world.

“So what growers enjoy is being able to sit back and enjoy a residue removal program and the income from that but not have to put a lot of effort into it,” added Levy.

Pacific Ag is looking for growers of rice, wheat, corn and other biomass crops who are interested in working with them. As cellulosic ethanol plants including Abengoa continue to ramp up to nameplate capacity, more biomass will be needed and Pacific Ag is ready to be the advanced biofuels partner to help make the cellulosic industry and the growers who plant the bioenergy crops, successful.

Learn more about Pacific Ag and how to become involved in the biomass energy revolution by listening to my interview with Bill Levy: Interview with Bill Levy, Pacific Ag

Abengoa Cellulosic Ethanol Plant Grand Opening photo album.

Allison Details Abengoa’s Cellulosic Plant

Danny Allison Abengoa Plant ManagerWho better to learn about how Abengoa’s cellulosic ethanol plant works then from Plant Manager Danny Allison. He explained to the standing room only crowd during Abengoa’s grand opening celebration, how the state-of-the-art biorefinery will produce cellulosic ethanol, bioenergy and other byproducts including ash that farmers can use as organic fertilizer on their fields.

Here is how the plant works:

Biomass: biomass harvested from local growers corn and wheat fields by Pacific Ag is delivered to the Abengoa plant to begin the ethanol production process. Each bale is quality tested for moisture, dust and other contaminants that could hinder the conversion process.

Biomass In-take Lines: six-packs of residue travel down conveyor belts to be separated into single bales by a singulator. Each bale goes through a chopper, cutting the biomass Biomass in-take lines at Hugoton Kansas Abengoa biorefineryinto easy-to-handle materials and then fed into a grinder.

Pre-Treatment: The pre-treatment process is where the starch is converted to sugars using Abengoa’s proprietary enzymes. From there fermentation occurs suing industrial yeast to convert the sugar to alcohol. At the end of fermentation, the liquid, now 5 percent alcohol, goes into a 1.3 million gallon tank, or beer well.

Distillation System and Ethanol Holding Tanks: All solids, water vapor and alcohol are removed. The now 95 percent pure ethanol moves to a column while the remaining 5 percent goes to the bottom for reprocessing and reclamation. After all impurities and water are removed, the finished ethanol is pumped to half-million storage tanks and ready for shipment by rail or truck.

Electrical Power Station: The Abengoa bioenergy plant will also produce up to 21MW of renewable electricity used to power the plant. Excess electricity will be fed to the grid for city use.

Learn more about the process by listening to Danny Allison’s remarks: Danny Allison Remarks

Abengoa Cellulosic Ethanol Plant Grand Opening photo album.

DOE’s Moniz Congrats Abengoa on Cellulosic Plant

US Energy Secretary Ernst MonizDepartment of Energy Secretary Ernest Moniz was on hand to help Abengoa Bioenergy celebrate the grand opening of its cellulosic ethanol plant in Hugoton, Kansas. With a beautiful day and a full house, excitement was high as Moniz took the stage to congratulate Abengoa’s achievement.

The $500 million biorefinery was supported, in part, by a DOE loan guarantee. Moniz began his remarks by putting the bioenergy plant in perspective of the larger picture and that is as part of President Obama’s “all of the above” energy strategy.

Moniz said the cellulosic ethanol plant serves three major objectives:

  1. Growing the economy – creating jobs.
  2. Advancing our energy security interests. No only for the United States alone, but also for our allies and friends.
  3. Moving towards the low carbon economy- addressing climate change.

Moniz also noted the importance of the innovation chain, “…and what we’re seeing to today is part of that…But if we’re going to kick start this, we have to work with the private sector with state and local governments with our research institutions and laboratories to get these technologies deployed and drive those costs down to be competitive continued Moniz. So this plant shows all of these features.”

He said that while there will be a few rough spots along the road, what the country is seeing today is the beginning of a new industry.

Listen to Energy Secretary Moniz’s complete comments here:

Listen to Energy Secretary Moniz’s remarks: Energy Secretary Moniz Remarks

Check out the Abengoa Cellulosic Ethanol Plant Grand Opening photo album.

Bioenergy for the Birds

A new research paper examines the relationship between bioenergy and the birds. The study, conducted by researchers at the University of Wisconsin-Madison (UW-Madison) in conjunction with the Wisconsin Department of Natural Resources (DNR) and published in PLOS ONE, looked at whether corn and perennial grassland fields in southern Wisconsin could provide both biomass for bioenergy as well as a bird habitat.

The answer is yes.

UW-Madison biofuels and bird studyThe study found that where there are grasslands there are birds. For example, grass and wildflower dominated field supported more than three times as many bird species as cornfields. And grassland fields can product ample biomass to be used to produce advanced biofuels.

Monica Turner, UW-Madison professor of zoology, and study lead author Peter Blank, a postdoctoral researcher in her lab, hope the findings help drive decisions that benefit both birds and biofuels, too, by providing information for land managers, farmers, conservationists and policy makers as the bioenergy industry ramps up, particularly in Wisconsin and the central U.S.

The research team selected 30 different grassland sites – three of which are already used for small-scale bioenergy production – and 11 cornfields in southern Wisconsin. Over the course of two years, the researchers characterized the vegetation growing in each field, calculated and estimated the biomass yields possible, and counted the total numbers of birds and bird species observed in them.

According to Blank and Turner, the study is one of the first to examine grassland fields already producing biomass for biofuels and is one of only a few analyses to examine the impact of bioenergy production on birds. While previous studies suggest corn is a more profitable biofuel crop than grasses and other types of vegetation, the new findings indicate grassland fields may represent an acceptable tradeoff between creating biomass for bioenergy and providing habitat for grassland birds. The landscape could benefit other species, too.

Among the grasslands studied, the team found monoculture grasses supported fewer birds and fewer bird species than grasslands with a mix of grass types and other kinds of vegetation, like wildflowers. The team found that the presence of grasslands within one kilometer of the study sites also helped boost bird species diversity and bird density in the area.

This is an opportunity, Turner said, to inform large-scale land use planning. By locating biomass-producing fields near existing grasslands, both birds and the biofuels industry can win.

Renewable Energy Co-Product Wins Award

magic-dirtThe inaugural Bioproducts Innovation of the Year awards were announced this week at the Bioproducts World 2014 Showcase and Conference in Columbus, Ohio and a co-product of renewable energy was named the consumer Bioproduct Innovation of the Year award at this first annual competition.

Cenergy USA of Little Rock, Arkansas won for the development of Magic Dirt, a recycled co-product of generating renewable energy and reducing greenhouse gas emissions. Cenergy specializes in the development and financing of renewable energy, distributed generation and energy efficient projects.

Magic Dirt™ is certified as a Premium Potting Soil by the Mulch & Soil Council, certified by USDA BioPreferred Program as 100% BioBased and approved for use in organic production by the State of Idaho. Each cubic yard of Magic Dirt™ is the end result of generating over 100 kWh of renewable energy and eliminating more than 1,800 pounds of greenhouse gases from the environment as a sustainable alternative to peat moss.

Symposium Examines Critical Energy Infrastructure

The Midwest Energy International Symposium will look at how the U.S. will confront a host of energy environment and infrastructure challenges over the next two years. The event will take place on Thursday, October 9, 2014 at the Quad-Cities Waterfront Convention Center located in Bettendorf, Iowa.

Speakers and panelists will provide valuable information and insights regarding energy Midwest Energy Natl Symposiumexports including ethanol, biodiesel, biojet fuels and the supply chains and logistics for fuel transport systems including the trucking, railroad and water transport industries.

The featured keynote speaker is Dr. Gong Ping Yeh, Fermilab with the United States Department of Energy (DOE). His research and interests in sustainable energy include wind, solar, biofuels, electric vehicles and improving energy efficiencies. In recent years, he has focused on Accelerator Driven System and Thorium energy as a new source of energy. Dr. Yeh has been serving internationally as an advisor for sustainable energy in many countries.

Other keynote speakers include:

  • Lt. General Wallace “Chip” Gregson, Jr. (Ret.) will address United States Department of Defense Sustainable Energy Projects.
  • The Rock Island Arsenal, United States Army, will present energy program models for hydroelectricity.
  • Mexico: Creating an Energy Self Sufficient Region in NAFTA, Mexico Energy Ministry
  • Korea: Korea’s Energy Future, Global America Business Institute
  • Germany: Germany’s Current Energy Transition and Use of Biogas as a Fuel, German American Chamber of Commerce, Chicago.

More information about the event along with registration information can be found here.

Short Rotation Woody Crops Ideal for Energy

Research from the University of Tennessee Center for Renewable Carbon has found that fast growing, short rotation wood crops (SRWC) are ideal as a biomass source to produce bionergy and biofuels. The research will be featured over the next three months as the Southeastern Partnership for Integrated Biomass Supply Systems’ (IBSS) Woody Crop Whistle Stop Tour that will feature Auburn University’s tractor-trailer scale mobile biomass gasifier. During the tour, the gasifier will demonstrate how to turn biomass into electricity on a small scale. Partners include North Carolina State University, ArborGen, University of Georgia, Auburn and UT.

On Tuesday, September 30, 2014 the tour will stop in Columbus, Miss., for an IBSS/Advanced Hardwood Biofuels (AHB) Field Day. Based on two years of successful experiments in the Southeast and Pacific Northwest with fast-growing cottonwood and hybrid poplars, IBSS, AHB, GreenWood Resources, and ArborGen have partnered to establish a 70-acre hybrid poplar plantation. Mississippi State University has also been an integral partner throughout the process, assisting in research and helping with field day activities. At this stop, visitors will get a close-up view of the SRWC system and learn about new research on genetics, stand establishment, disease problems, wildlife impacts and biomass harvesting logistics.

Cottonwood Tree (Istock photo)On Friday, October 10, the tour will stop at the University of Tennessee Institute of Agriculture East Tennessee AgResearch and Education Center in Knoxville for a half-day Woody Crops Field Day. Visitors to the event will learn first-hand about new energy crops like fast-growing hybrid poplar and their importance as a feedstock for the emerging biofuels industry. This event will coincide with the IBSS Annual Meeting, so many experts will be on hand to answer questions about bioenergy production.

Stops are also planned for September 13, 2014 at Auburn’s Ag Discovery Day and November 19 at the Alabama Joint Leadership Development Conference (JLDC). Details about each event can be found online at at the IBSS website.

The IBSS Partnership has also been involved in research to develop drop-in liquid fuels, such as gasoline, diesel and jet fuel for use as a replacement for grain (corn)-based ethanol. The project produced some 1500 gallons of a “green” diesel fuel from Southeastern-produced pine and poplar biomass and technology provided in part by industrial research partners.

Tim Rials, director of the UT Center for Renewable Carbon and a biochemist, contends that the U.S. should invest in the Southeast for the production of biofuels. “Our region can produce a variety of biomass feedstocks including dedicated crops such as switchgrass and sorghum, along with dedicated woody crops and forest residues,” he said.

The goal of the IBSS partnership is to demonstrate the production of advanced biofuels from sustainable sources of lignocellulosic biomass. Initially, the partnership has focused its efforts on perennial switchgrass and short-rotation woody crops like eucalyptus and poplar. Rials said each dedicated crop has inherent performance and cost advantages for specific conversion technologies. “We are working to match the economic and environmental performance of each feedstock with a preferred conversion platform so that the ultimate product, the particular biobased fuel, will be reliable, available and affordable.”

USDA Selects 36 Energy Facilities for Biomass Deliveries

The United States Department of Agriculture (USDA) has selected 36 energy facilities in 14 states to accept biomass deliveries as part of the Biomass Crop Assistance Program (BCAP). Biomass owners who supply these bioenergy facilities may qualify for BCAP delivery assistance beginning July 28, 2014. BCAP was reauthorized in the 2014 Farm Bill.

bcap_logo_368Of the total $25 million per year authorized for BCAP, up to 50 percent ($12.5 million) is available each year to assist biomass owners with the cost of delivery of agricultural or forest residues for energy generation. Some BCAP payments will target the removal of dead or diseased trees from National Forests and Bureau of Land Management public lands for renewable energy, which reduces the risk of forest fire.

“This program generates clean energy from biomass, reduces the threat of fires by removing dead or diseased trees from public forest lands, and invests in rural businesses and new energy markets,” said Tom Vilsack, USDA ag secretary. “The fires we are seeing right now in the west underscore the need for forest restoration and fire prevention. Pairing this effort with forest restoration on public lands will help guard against these fires while promoting economic opportunity for rural communities.”

Farmers, ranchers or foresters who harvest and deliver forest or agricultural residues to a BCAP-qualified energy facility may be eligible for financial assistance for deliveries. The USDA Farm Service Agency (FSA), which administers BCAP, will begin accepting applications from biomass owners from July 28 through Aug. 25. Deliveries of residues for approved contracts may be made through Sept. 26, 2014.

Himark BioGas to Build 3 Anaerobic Digestion Plants

Himark BioGas International is building three integrated anaerobic digestion (AD) and fertilizer plants for NEO Energy in Massachusetts and Rhode Island. The AD plants will be designed and constructed by Himark and will recycle food waste to produce renewable electricity and organic-based fertilizer. As part of the agreement, Himark BioGas will act as a technology licensor and owner’s representative on behalf of NEO Energy LLC during the design, construction and operation stages of the plants.

GPHH_webreadyShane Chrapko, CEO of Himark BioGas, said, “The development of the anaerobic digestion plants will positively contribute to effective food waste recycling, profitable pathogen-free fertilizer production, energy self-sufficiency and a reduction in carbon emissions for the local communities. Each ton of food waste diverted from the landfill will reduce Greenhouse Gas Emissions by just over one ton of CO2 (Equivalent).”

The AD plants will be designed based on Himark BioGas’ patented “IMUS” technology that can produce renewable energy and pathogen-free fertilizer from food waste, source separated organic materials, cow manure, ethanol plant waste/thin stillage, slaughter house waste, food processing waste and agricultural waste (open pen feedlot, sand-laden dairies, etc.). The IMUS technology also can handle feedstock containing large amounts of sand, dirt, rocks, plastic and cellulose. Furthermore, Himark said with its turnkey, guaranteed-maximum capital cost designs, the company guarantees electricity, gas and fertilizer outputs with any kind of feedstock.

“NEO’s anaerobic digestion plants will recycle food waste generated by supermarkets, food processors, restaurants and other institutions and divert that waste away from landfills and incineration facilities,” said Robert Nicholson, president of NEO Energy. “Our plants produce a high-quality organic-based fertilizer while reducing greenhouse gases, preserving landfill capacity and producing renewable energy. Our first plants will also be available to those businesses that will need to comply with the 2014 commercial food waste disposal ban in Massachusetts and the recently enacted law in Rhode Island requiring that food residuals produced by large waste generators be recycled starting in 2016.

Southern Nevada Water Authority Goes Solar

Southern Nevada Water Authority (SNWA) is going solar with the help of SunEdison. SNWA has signed a power purchase agreement that locks in the majority of its energy costs at a fixed rate. The power will be provided by a 14 MW solar farm that SunEdison will develop, construct, own and operate located in Clark County, Nevada.

SNWA logo“This partnership with SunEdison expands our renewable energy portfolio to about 18 percent of our total power mix, and it provides additional stability to power costs, which ultimately benefits Southern Nevada’s municipal water users,” said John Entsminger, Southern Nevada Water Authority General Manager. “When compared with traditional power production from fossil fuels, this solar facility will also save more than 100 million gallons of water and contribute to the sustainability of our community.”

According to SNWA, water is used in a number of ways in fossil fuel based electricity production, including generating steam to turn turbines, helping to keep power plants cool, and flushing away the fuel residue after fossil fuels are burned. By contrast, solar PV power plants do not use water in the production of electricity.

SunEdison-Logo“This project is a great example of how SunEdison can provide cost effective solar solutions to fit almost any location,” said Bob Powell, President, North America at SunEdison. “This ground-mounted facility will be built around a transmission and pipeline infrastructure that is quite complex – if we can do it here, we can do it anywhere.”

Construction of the facility will begin in early 2015 with commercial operation slated for later that year. Once operational, the solar power plant will be managed by the SunEdison Renewable Operation Center (ROC), which provides global 24/7 asset management, monitoring and reporting services. Data collected from the ROC is used to continuously improve the company’s products, project designs and service offerings.

Crop Residues, Manure Hold Great Potential for Bioenergy

Crop residues and manure hold great potential as bioenergy sources, especially in areas such as the Midwest where row crops and livestock provide all the ingredients. This report from the Union of Concerned Scientists (UCS) says those resources will need some help, though, from the right policies, practices, and investments.
UCSreport
UCS analysis finds that by 2030, U.S. farmers could sustainably produce up to 155 million tons of crop residues, many times the current level of production. U.S. livestock could produce another 60 million tons of manure, to be turned into clean-burning biogas.

The right policies, practices, and investments will help these clean energy sources realize their potential—with huge benefits for farmers, communities, and the environment…

Fuel and electricity made from agricultural biomass is potentially clean too. With the right practices, ethanol made from crop residues can produce 90 percent fewer lifecycle emissions, compared to gasoline.

Many states could significantly scale up their use of crop residues and manure. The largest include Iowa, a leading producer of corn ethanol, and Arkansas, the nation’s top rice producer.

Texas and California offer a lot of potential as well because of those states’ large agricultural outputs.

Renewable Energy Provides 56% of Electrical Generation

According to the latest “Energy Infrastructure Update” report from the Federal Energy Regulatory Commission’s Office of Energy Projects, solar, wind, biomass, geothermal, and hydropower provided 55.7% (1,965 MW of the 3,529 MW total installed) of new installed U.S. electrical generating capacity during the first half of 2014.

  • Solar provided 32.1% (1,131 MW)
  • Wind provided 19.8% (699 MW)
  • Biomass provided 2.5% (87 MW)
  • Geothermal provided 0.9% (32 MW)
  • Hydropower provided 0.5% (16 MW)
  • Most of the balance (1,555 MW – 44.1%) of the new generating capacity was provided by natural gas while no new coal or nuclear power capacity was reported

solar installationAccording to the SUN DAY Campaign, the dominant role being played by renewables in providing new electrical generating capacity in 2014 is continuing a trend now several years in the making. Over the past 30 months (i.e., since January 1, 2012), renewable energy sources have accounted for almost half (48.0%) or 22,774 MW of the 47,446 MW of new electrical generating capacity.

If calendar year 2011 is also factored in, then renewables have accounted for approximately 45% of all new electrical generating capacity over the past 3 1/2 years. In fact, since January 1, 2011 renewables have provided more new electrical generating capacity than natural gas (31,345 MW vs. 29,176 MW) and nearly four times that from coal (8,235 MW)

Renewable energy sources now account for 16.28% of total installed U.S. operating generating capacity: water – 8.57%, wind – 5.26%, biomass – 1.37%, solar – 0.75%, and geothermal steam – 0.33%. This is up from 14.76% two years earlier (i.e., June 30, 2012) and is now more than nuclear (9.24%) and oil (4.03%) combined.

“A new report from the U.S. Energy Information Administration (EIA) is projecting that renewable energy sources will account for only 24% of new capacity additions between now and 2040,” Ken Bossong, Executive Director of the SUN DAY Campaign, noted. “However, the latest FERC data coupled with that published during the past several years indicate that EIA’s numbers are once again low-balling the likely share – and probably dominant share – of renewables in the nation’s future energy mix.”

DOE & USDA Announce Bioenergy Projects

Ten projects will receive funding aimed at accelerating genetic breeding programs to improve plant feedstocks for biofuel production as well as biopower and bio-based power. The U.S Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) has awarded $12.6 million in research grants designed for harnessing nonfood plant biomass to replace US DOE Energy logofossil fuels and chemicals. The agencies note that feedstock crops tend to require less intensive production practices and can grow on poorer quality land than food crops, making this a critical element in a strategy of sustainable biofuels production that avoids competition with crops grown for food.

“Biofuels and bio-based products offer the potential of homegrown American resources that can reduce our dependence on imported oil and also cut carbon emissions,” said Secretary of Energy Ernest Moniz. “This advanced research is helping us to lay the groundwork for biomass as an important part of the low-carbon future.”

The winning projects are located in California, Colorado, Illinois, Michigan, Minnesota, Missouri, New York, Texas, and Virginia. DOE’s Office of Science will provide $10.6 million in funding for eight projects, while USDA’s National Institute of Food and Agriculture (NIFA) will award $2 million to fund two projects. Initial funding will support research projects for up to three years.

Agriculture Secretary Tom Vilsack added, “Innovative research is a critical link to stimulating rural economies and creating jobs across America. These awards are part of the Obama Administration’s “all of the above” energy policy. These projects will not only support our efforts to provide a sustainable and domestic energy source for the nation, but also improve the lives of rural residents.”

New projects to be funded this year will build upon gains in genetic and genomic resources for bioenergy and biofuels. The projects will accelerate the breeding of optimized dedicated bioenergy feedstocks through a better understanding of complex interactions between bioenergy feedstock plants and their environment, allowing the development of new regionally-adapted bioenergy feedstock cultivars with maximal biomass or seed oil yield and traits leading to more sustainable production systems, such as minimal water usage and nutrient input requirements.

Maine Utilities Partner to Improve Grid

Emera Maine and Central Maine Power (CMP) have agreed to jointly develop electric transmission projects in Maine. The goal of all projects is to improve links between southern New England and northern Maine, where more than 2,100 megawatts of wind power development have been proposed. The agreement between the utilities comes in response to a call by the six New England governors for investments in the region’s energy infrastructure to diversify the energy portfolio and gain access to new renewable energy resources.

As the state’s two largest utilities, the companies serve more than 95 percent of Maine’s homes and businesses. The utilities have significant expertise with transmission projects, including the MEPCO transmission line that extends from central Maine to New Brunswick, Canada.

Transmission Project in MaineCentral Maine Power is the state’s largest utility serving 605,000 homes and businesses in the southern third of the state. The company is nearing completion of the Maine Power Reliability Program, a $1.4 billion investment in new transmission lines and substations to reinforce its 345,000 volt bulk power grid.

“Our Maine Power Reliability Program is the largest construction project ever in Maine, and one of New England’s largest transmission projects,” said Sara Burns, president and CEO of Central Maine Power. “It’s a vast and complex undertaking, but four years into construction, the project is on time and on budget.”

Emera Maine serves approximately 154,000 homes and businesses in eastern and northern Maine. Significant transmission projects completed by Emera Maine include the 43-mile, 115,000 volt Downeast Reliability Project, and the 85-mile, 345,000 volt Northeast Reliability Interconnect in 2007.

“Electric transmission can be a significant challenge to new low/no emitting generation sources seeking to enter our New England market”, said Gerard Chasse, president and COO of Emera Maine. “That’s a challenge that our companies have been working together on for some time, particularly in Northern Maine. With this MOU we are renewing and expanding these efforts to identify and develop creative and cost effective transmission solutions to benefit the State and the region.”

The partners have outlined two initial phases of work. Phase One will analyze the feasibility of each project, including technical feasibility, public policy, regulatory considerations, and outreach to other potential parties to the project. Phase Two will include all development activities from design, engineering, siting, through construction bidding.