Canola Genome Could Unlock Biodiesel Potential in Plant

PatersonResearchers have unlocked the genome for canola, and their discovery could mean a better plant for biodiesel. The University of Georgia says its scientists are part of the international team that published the genome of Brassica napus, better known as canola, in the journal Science.

“This genome sequence opens new doors to accelerating the improvement of canola,” said Andrew Paterson, Regents Professor, director of UGA’s Plant Genome Mapping Laboratory and co-corresponding author for the study. “We can use this knowledge to tailor the plant’s flowering time, make it more resistant to disease and improve a myriad of other traits that will make it more profitable for production in Georgia and across the country.”

The Plant Genome Mapping Laboratory played prominent roles in the sequencing both B. rapa and B. oleracea in 2011 and 2014, respectively.

“Understanding the genomes of B. rapa and B. oleracea was key to piecing together the canola genome,” Paterson said. “It’s like a genetic love triangle between the three species, with canola sometimes favoring genes from B. rapa or B. oleracea or sometimes both.”

Researchers believe the knowledge will eventually give them a more sustainable feedstock for biodiesel production.

Solar Cells You Can See Through

Did you know that you can have the best of both worlds? Solar energy and a view. A team of researchers as Michigan State University (MSU) have done just this- developed a new type of solar concentrator that when placed over a window, creates energy but doesn’t block the view. It is called a transparent luminescent solar concentrator and can be used on buildings, cell phones and any other device that has a clear surface.

MSU Solar Concentrator ModuleThe key word here is “transparent” according to Richard Lunt of MSU’s College of Engineering.

While research in this arena is not new, the results were poor as the energy production was low and inefficient and the materials were colored thereby blocking the view below the solar cell. The MSU solar harvesting system uses small organic molecules developed by Lunt and his team to absorb specific nonvisible wavelengths of sunlight better than its predecessors.

“No one wants to sit behind colored glass,” said Lunt, an assistant professor of chemical engineering and materials science. “It makes for a very colorful environment, like working in a disco. We take an approach where we actually make the luminescent active layer itself transparent. We can tune these materials to pick up just the ultraviolet and the near infrared wavelengths that then ‘glow’ at another wavelength in the infrared.”

The “glowing” infrared light is guided to the edge of the plastic where it is converted to electricity by thin strips of photovoltaic solar cells. “Because the materials do not absorb or emit light in the visible spectrum, they look exceptionally transparent to the human eye,” Lunt said.

One of the benefits of this new development is its flexibility. While the technology is at an early stage, it has the potential to be scaled to commercial or industrial applications with an affordable cost. Lunt noted that more work is needed in order to improve its energy-producing efficiency. Currently it is able to produce a solar conversion efficiency close to 1 percent, but noted they aim to reach efficiencies beyond 5 percent when fully optimized. The best colored LSC has an efficiency of around 7 percent.

Report: No Link Between Wind Farms & Health

According to a new report that reviewed 49 cases heard relating to wind farms and health, 48 cases determined that there was no reliable evidence showing wind farms cause health impacts. The report was released by the Energy and Policy Institute and authored by Senior Fellow on Wind Energy Mike Barnard. The report also highlights 16 persons who have self-identified as experts in wind farms and health, even though they lack credentials or experience that would justify an expert perspective in legal cases. Via the report, all 16 people have been rejected outright as experts or the evidence they submitted was rejected.

Wind Health Impacts Dismissed in CourtMike Barnard said of the report findings, “Countries, states, and towns considering wind farms do not have to worry about legal cases related to health. The evidence does not hold up in court. The witnesses that are brought-in to help by those opposed to wind farms are not actually experts. And despite the disinformation campaign by anti-wind advocates, the courts have ruled that wind farms do not cause health impacts.”

The report also discusses ethical issues that plague a number of anti-wind “experts” who are leveraging no-longer-active or irrelevant medical credentials to lend weight to campaigns against wind energy, and are performing research without oversight.

According to the Energy and Policy Institute, there are about 320 gigawatts (GW) of installed wind capacity worldwide providing safe, clean electricity to the grid, two thirds of which has been added in the past five years. In total, 21 reviews of evidence have concluded that, with the usual minimum setbacks of 400-600 meters, wind turbines cannot make people sick.

Barnard added, “The rapid growth of the wind energy industry has drawn opposition from individuals and local groups claiming health impacts in order to prevent wind farms from being built. But these efforts have not been successful, and for good reason: wind farms do not cause health problems. Government entities and developers should not expect to be held liable for health issues blamed upon wind energy, as the cases have been rejected time and time again.”

Some Retiring Utility Plants Need No Replacement

According to Black & Veatch’s 8th annual Strategic Directions: U.S. Electric Industry report, many retiring nuclear and coal power plants may not need to be replaced on a megawatt-to-megawatt basis. With new technologies and distributed generation along with soft energy demand growth, utilities will be able to replace those retiring with ones that produce less energy.

“This year’s Strategic Directions: U.S. Electric Industry report finds many utilities at a crossroads,” said Dean Oskvig, president of Black & Veatch’s energy business. “The influx of new technologies, new energy sources and new generation approaches, create immense challenges and opportunities for utilities. What has not and will not change, however, is the mandate to deliver the ‘always on’ reliable electric service the
industry has provided for more than 100 years.”

modal-primary-driver-for-rate-increasesThe report found that the rise of distributed generation in particular creates unique challenges for utilities. The technology requires rapid changes to the power grid in order to integrate new assets and resources. Utilities must also be able to ramp up capacity to account for varying renewable energy output (aka wind doesn’t always blow, the sun doesn’t always shine). Where distributed generation reduces demand, utilities will have to revisit their current revenue structure in order to ensure continued reliable service.

John Chevrette, president of Black & Veatch’s management consulting business, noted, “Every kilowatt that is now being produced by a third party or a consumer is a kilowatt not being sold by the utility. At the same time, utilities still carry the burden of building, maintaining and operating the bulk of the power delivery system. Given the high cost of maintaining these assets, we expect to see more utilities making the case with regulators to adjust their business models.”

Based on data collected by industry professionals across the U.S., the report tracks utility leaders’ views on a range of major issues. Some key findings include:

  • Half of the respondents stated their company is planning to replace retiring coal and nuclear power plants with gas generation. Natural gas will also be used as backup power for renewable generation.
  • Nearly 60 percent of utilities are updating emergency response plans in order to improve resiliency to weather and unanticipated events.
  • Utilities are working to provide consumers with resources to better manage energy consumption. Almost one-third of utility respondents stated their organization is offering Home Area Network solutions, such as smart thermostats, to support demand response programs.
  • More than 60 percent of utility leaders believe DG will grow beyond its current 5 percent market share of U.S. power generation by 2020.

Biodiesel Bike & Truck to Race at Bonneville

Bonneville_MorganMcCurdy1A motorcycle and a truck powered by biodiesel are among those to race this year at Utah’s Bonneville Salt Flats… when it finally dries out enough! The arid region that hosts the yearly Nationals Speed Week, scheduled this year to run Aug. 9-15, recently received a couple of inches of rain, flooding the usually perfectly dry race course. Officials are aiming to try to put on the event in late September/early October, and once they do, racers from Utah State University will be putting biodiesel to the ultimate speed test.

At this year’s event, Utah State will race two vehicles powered by USU-made biodiesel: a 2011 Kawasaki KLR motorcycle with a 0.9 liter Kobuta engine and a 1984 Dodge Rampage subcompact utility truck powered by a 1.5 liter Volkswagen turbo-diesel engine. Both vehicles are privately owned and were offered for use after the owners witnessed the Aggies’ successful racing performances in 2012 and 2013.

“We’re tapping years of outstanding research by USU scientists Bruce Bugbee, Ralph Whitesides, Clark Israelsen and Mike Pace, who are perfecting ways to grow and extract the maximum yield from these sources in the most cost-effective manner possible,” says [undergrad biochemist Mike Morgan, driver of the race car that set USU’s previous records], who is also a USU Extension research intern working with Whitesides, Extension weeds specialist and professor in USU’s Department of Plants, Soils and Climate.

With Whitesides, Morgan is investigating use of safflower and other oilseed crops, grown in areas unsuitable for tillable agriculture such as highway roadsides and military land, for biodiesel production. The young scholar, who was recently named co-chair of the National Biodiesel Board’s Next Generation Scientists for Biodiesel partnership program, is following in the footsteps of the late USU researcher Dallas Hanks, who pioneered Utah’s innovative “Freeways-to-Fuel” program. Hanks, who died June 25, 2014, from cancer, received posthumous honors from Salt Lake County during the county council’s Aug. 5, meeting.

“You’ll see ‘This One’s for Dallas’ on my helmet and on the truck at Bonneville,” says Morgan. “Dallas was a great mentor to me and I’m humbled and proud to carry on his legacy.”

In the past, Utah State researchers have run vehicle powered by biofuels made from yeast and algae.

UC Riverside Researchers Enhance Biofuel Yields

University of California, Riverside researchers have developed a versatile, virtually non-toxic and efficient way to convert raw ag and forest residues along with other plant matter into biofuels and biochemicals. Professor Charles E. Wyman is leading the research team and their patent-pending method coined Co-solvent Enhanced Lignocellulosic Fractionation (CELF) and they believe they are another step closer to solving the goal of producing biofuels and biochemicals from biomass and high enough yields and low enough costs to become viable.

“Real estate is about location, location, location,” said Wyman, the Ford Motor Company Chair in Environmental Engineering at UC Riverside’s Center for Environmental Research and Technology (CE-CERT). “Successful commercialization of biofuels technology is about yield, yield, yield, and we obtained great yields with this novel technology.”

Charles Cai UC RiversideThe key to the technology, according to Wyman, is using tetrahydrofuran (THF) as a co-solvent to aid in the breakdown of raw biomass feedstocks to produce valuable primary and secondary fuel precursors at high yields at moderate temperatures. These fuel precursors can then be converted into ethanol, chemicals or drop-in fuels. Drop-in fuels have similar properties to conventional gasoline, jet, and diesel fuels and can be used without significant changes to vehicles or current transportation infrastructure.

Compared to other available biomass solvents, THF is well-suited for this application because it mixes homogenously with water, has a low boiling point (66 degrees Celsius) to allow for easy recovery, and can be regenerated as an end product of the process, explained Charles M. Cai, a Ph.D. student working with Wyman.

The research, focused on lignin, was recently published in Green Chemistry: “Coupling metal halides with a co-solvent to produce furfural and 5-HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy.”

Camelina Researched for Biodiesel and Drop-in Fuel

camelinaResearchers at several universities are looking at the potential camelina has as a feedstock for biodiesel or even using the oil as a straight drop-in fuel. This news release from Kansas State University says Timothy Durrett, assistant professor of biochemistry and molecular biophysics at KSU, has joined researchers from Colorado State University, the University of Nebraska, Lincoln and the University of California, Davis, in using a $1.5 million joint U.S. Department of Agriculture and Department of Energy grant to see how to get the most out of a promising crop: Camelina sativa.

Camelina, a nonfood oilseed crop, can be a valuable biofuel crop because it can grow on poorer quality farmland and needs little irrigation and fertilizer. It also can be rotated with wheat, Durrett said.

“Camelina could give farmers an extra biofuel crop that wouldn’t be competing with food production,” Durrett said. “This research can add value to the local agricultural economy by creating an additional crop that could fit in with the crop rotation.”

The research will take advantage of the recently sequenced camelina genome. For the project, Durrett is improving camelina’s oil properties and by altering the plant’s biochemistry to make it capable of producing low-viscosity oil.

The article says developing a low-viscosity oil is crucial to improving biofuels and could allow camelina oil to be able to be dropped in as a fuel without any kind of chemical modification.

UIC Researchers Convert Waste Carbon to Fuel

University of Illinois at Chicago (UIC) scientists, under the lead of Amin Salehi-Khojin, UIC professor of mechanical and industrial engineering, have synthesized a catalyst that improves their system for converting waste carbon dioxide into syngas. The syngas is a percursor of gasoline and other energy-rich products and this recent achievement in the the research team’s process has brought the production of CO2 to energy closer to commercial viability. The study was published in the journal Nature Communications on July 30, 2014.

The research team developed a unique two-step catalytic process that uses molybdenum disulfide and an ionic liquid to “reduce,” or transfer electrons, to carbon dioxide in a chemical reaction. The new catalyst improves efficiency and lowers cost by replacing expensive metals like gold or silver in the reduction reaction.

UIC researcher Amin Salehi-KhojinMohammad Asadi, UIC graduate student and co-first author on the paper said the discovery is a big step toward industrialization. “With this catalyst, we can directly reduce carbon dioxide to syngas without the need for a secondary, expensive gasification process,” explained Asadi. In other chemical-reduction systems, he noted, the only reaction product is carbon monoxide. The new catalyst produces syngas, a mixture of carbon monoxide plus hydrogen.

Salehi-Khojin, principal investigator on the study continued the explanation by noting the high density of loosely bound, energetic d-electrons in molybdenum disulfide facilitates charge transfer, driving the reduction of the carbon dioxide. “This is a very generous material,” said Salehi-Khojin. “We are able to produce a very stable reaction that can go on for hours.”

The proportion of carbon monoxide to hydrogen in the syngas produced in the reaction can also be easily manipulated using the new catalyst, said Salehi-Khojin.

“Our whole purpose is to move from laboratory experiments to real-world applications,” he said. “This is a real breakthrough that can take a waste gas — carbon dioxide — and use inexpensive catalysts to produce another source of energy at large-scale, while making a healthier environment.”

MSU to Develop Hardier Switchgrass for Biofuels

The U.S. Department of Energy (DOE) along with the U.S. Department of Agriculture have awarded $1 million to Michigan State University (MSU) to develop hardier switchgrass. The feedstock is a North American native plant that holds great potential as a biofuel source. The research team believes that if switchgrass would better survive northern winters, the plant could be an even better source for clean energy.

Robin Buell, MSU plant biologist, will work to identify the genetic factors that regulate cold hardiness in switchgrass. “This project will explore the genetic basis for cold tolerance that will permit the breeding of improved switchgrass cultivars that can yield higher biomass in northern climates,” said Buell, also an Robin Buell MSUMSU AgBioResearch scientist. “It’s part of an ongoing collaboration with scientists in the USDA Agricultural Research Service to explore diversity in native switchgrass as a way to improve its yield and quality as a biofuel feedstock.”

One of the proposed methods to increase the biomass of switchgrass is to grow lowland varieties in northern latitudes where they flower later in the season. Lowland switchgrass is not adapted to the colder conditions of a northern climate, however, and merely a small percentage of the plants survive. It is these hardy survivors that are the subject of Buell’s research.

“Dr. Buell’s investment in this collaborative project will identify important genetic elements in switchgrass that control survival over the winter and can be used to breed better adapted cultivars to meet biomass production needs,” noted Richard Triemer, chairperson of the plant biology department.

Buell hopes to identify alternative forms of the same gene that is responsible for cold hardiness by studying switchgrass’ genetic composition, These could then be applied in breeding programs for switchgrass that can thrive in northern climates.

Spinach May Be Powerful Fuel for Biofuels

Spinach may have super strength to unlock some of the mysteries of biofuel production. Purdue University physicists are part of an international group using spinach to study the proteins involved in photosynthesis, the process by which plants convert the sun’s energy into carbohydrates used to power cellular processes.

“The proteins we study are part of the most efficient system ever built, capable of converting the energy from the sun into chemical energy with an unrivaled 60 percent efficiency,” said Yulia Pushkar, a Purdue assistant professor of physics involved in the research. “Understanding this sPushkar spinachystem is indispensable for alternative energy research aiming to create artificial photosynthesis.”

As Pushkar explains, during photosynthesis plants use solar energy to convert carbon dioxide and water into hydrogen-storing carbohydrates and oxygen. Artificial photosynthesis could allow for the conversion of solar energy into renewable, environmentally friendly hydrogen-based fuels.

In Pushkar’s laboratory, students extract a protein complex called Photosystem II from spinach they buy at the supermarket. The students then extract the proteins in a specially built room that keeps the spinach samples cold and shielded from light. Next the team excites the proteins with a laser and records changes in the electron configuration of their molecules.

“These proteins require light to work, so the laser acts as the sun in this experiment,” explained Pushkar. “Once the proteins start working, we use advanced techniques like electron paramagnetic resonance and X-ray spectroscopy to observe how the electronic structure of the molecules change over time as they perform their functions.” Continue reading

DOE Allocates $31M to Establish FORGE

The Department of Energy (DOE) has allocated up to $31 million to establish a new program: Frontier Observatory for Research in Geothermal Energy (FORGE). The field lab will be dedicated to cutting-edge research on enhanced geothermal systems (EGS).

EGS are engineered reservoirs, created beneath the surface of the Earth, where there is hot rock but limited pathways through which fluid can flow. During EGS development, underground fluid pathways are safely created DOE FORGE programand their size and connectivity increased. These enhanced pathways allow fluid to circulate throughout the hot rock and carry heat to the surface to generate electricity. In the long term, DOE believes EGS may enable domestic access to a geographically diverse baseload, and carbon-free energy resource on the order of 100 gigawatts, or enough to power about 100 million homes.

“The FORGE initiative is a first-of-its-kind effort to accelerate development of this innovative geothermal technology that could help power our low carbon future,” said Assistant Secretary for Energy Efficiency and Renewable Energy Dave Danielson. “This field observatory will facilitate the development of rigorous and reproducible approaches that could drive down the cost of geothermal energy and further diversify our nation’s energy portfolio.”

According to DOE, the research and development (R&D) at FORGE will focus on techniques to effectively stimulate large fracture networks in various rock types, technologies for imaging and monitoring the evolution of fluid pathways, and long-term reservoir sustainability and management techniques. In addition, a robust open data policy will make FORGE a leading resource for the broader scientific and engineering community studying the Earth’s subsurface. These significant advances will reduce industry risk and ultimately facilitate deployment of EGS nationwide.

The FORGE initiative is comprised of three phases. The first two phases focus on selecting both a site and an operations team, as well as preparing and fully characterizing the site. In Phase 1, $2 million will be available over one year for selected teams to perform analysis on the suitability of their proposed site and to develop plans for Phase 2. Subject to the availability of appropriations, up to $29 million in funding is planned for Phase 2, during which teams will work to fully instrument, characterize, and permit candidate sites.

Subject to the availability of appropriations, Phase 3 will fund full implementation of FORGE at a single site, managed by a single operations team. This phase will be guided by a collaborative research strategy and executed via annual R&D solicitations designed to improve, optimize, and drive down the costs of deploying EGS. In this phase, partners from industry, academia, and the national laboratories will have ongoing opportunities to conduct new and innovative R&D at the site in critical research areas such as reservoir characterization, reservoir creation, and reservoir sustainability.

Aviation & Marine Biofuels to Increase by 2024

According to research conducted by Navigant Research, the aviation and marine biofuels market will represent one of the fastest-growing segments of the global biofuels market. “Aviation and Marine Biofuels,” found that in the last five years, more than 40 commercial airlines worldwide have flown nearly 600,000 miles powered in part by biofuel. Much of the development in this sector center on the world’s largest aviation market: the U.S. The report concludes, by 2024, biofuels will make up 6.1 percent of the aviation and marine fuel market in America.

marina gas pump“The United States is expected to emerge as the clear leader in the construction of integrated biorefineries capable of producing bio-based jet fuel and marine distillates over the next 10 years,” said Mackinnon Lawrence, research director with Navigant Research. “New biorefinery construction in the U.S. is expected to generate $7.8 billion in cumulative revenue over the next 10 years, representing 66 percent of the revenue generated globally.”

The European Union (EU) is also an active participant in the emerging aviation and marine biofuels market, according to the report. The biggest wildcard in forecasting EU growth projections is the implementation of the EU emissions trading system. If the EU moves forward with a carbon tax on airlines operating in EU territory, then investment in building aviation and marine biofuels production capacity is expected to increase dramatically across the region.

The report forecasts and market sizing for nameplate production capacity and production volumes for advanced aviation and marine biofuels. Forecasts are segmented by geography, conversion platform, and fuel type. The total addressable market size for commercial aviation, marine shipping, and U.S. military applications is analyzed, and the report also provides a qualitative analysis of key stakeholder initiatives, market drivers, challenges, and technology developments, as well as profiles of key stakeholders across the value chain.

Biostimulation for Algae Growth Could Help Biodiesel

solarmagnatron1Growing algae for biodiesel seems like a viable option when you consider how oil-rich (and thus, feedstock-rich) the one-celled organisms can be. But while algae is one of the fastest growing organisms on Earth, getting enough growth out of the microbes to make the proposition commercially viable is the holy grail for algae-biodiesel producers. Researchers from AlgaStar Inc. have found a way to increase algae growth rates by 300 percent using a technique called biostimulation and a biomass grower called the SolarMagnatron.

Biological stimulation from electromagnetic fields and/or microwaves offers a novel technology that can accelerate algae growth substantially compared with natural sunlight. Laboratory tests at AlgaStar, Inc. and research collaborators at the University of Western Ontario, (UWO) have proven the biostimulation concept but considerably more research is needed. Additional research efforts are now funded for AlgaStar with Los Alamos National Laboratory. Additional grant applications and research sponsor funding will include Dr. Bruce Rittmann’s lab in the Biodesign Institute at ASU, the world class AzCATI Test Bed at ASU, NanoVoltaics, UWO and others.

The AlgaStar algae production and biostimulation system integrates two types of electromagnetic energy. The first is a millitesla generator and the second a millimeter microwave generator that radiates spontaneous growth energy into large volumes of algae biomass. The research teams have demonstrated that electromagnetic energy waves can provide an increase in algae biomass and its corresponding lipid oil production by up to 300%.

AlgaStar is using it’s patented 4500 gallon SolarMagnatron biomass production system that has an automated biosystem controller (ABC), which optimizes biomass production and uses light very efficiently. During the day, it maximizes natural sunlight, and when it’s night, special domed acrylic lenses and flat-panel glass reactors containing high-efficiency florescent and LED lights produce artificial sunlight at specific wavelengths and power levels that optimize algae photosynthesis.

More information is available on the AlgaStar website.

UCR Helps Solar Energy Get a Boost

A recent article published in the Journal of Physical Chemistry Letters by University of California, Riverside (UCR) chemists looks at the research focused on “singlet fission,” a process in which a single photon generates a pair of excited states. This 1->2 conversion process has the potential to boost solar cell efficiency as much as 30 percent.

UC Riverside Singlet Fission researchIn addition to improving solar panels, the research can also aid in developing more energy-efficient lighting and photodetectors with 200 percent efficiency that can be used for night vision. Biology may use singlet fission to deal with high-energy solar photons without generating excess heat, as a protective mechanism.

Today solar cells work by absorbing a photon, which generates an exciton, which subsequently separates into an electron-hole pair. It is these electrons that become solar electricity. The efficiency of these solar cells is limited to about 32 percent; however, by what is called the “Shockley-Queisser Limit”. Future solar cells, also known as “Third Generation” solar cells, will have to surpass this limit while remaining inexpensive, requiring the use of new physical processes. Singlet fission is an example of such a process.

“Our research got its launch about ten years ago when we started thinking about solar energy and what new types of photophysics this might require,” said Christopher Bardeen, a professor of chemistry, whose lab led the research. “Global warming concerns and energy security have made solar energy conversion an important subject from society’s point-of-view. More efficient solar cells would lead to wider use of this clean energy source.”

Turning Biodiesel By-Product into Valued Chemicals

RiceWong1Researchers have discovered a catalyst of precious metals that is uncovering some real treasure in a biodiesel by-product. Rice University says engineers at the school have found palladium-gold nanoparticles, used as catalysts for cleaning polluted water, are also surprisingly good at turning glycerol into valuable chemicals.

Through dozens of studies, [Michael] Wong’s team focused on using the tiny metallic specks to break down carcinogenic and toxic compounds. But his latest study, which is available online and due for publication in an upcoming issue of the Royal Society of Chemistry’s journal Chemical Science, examined whether palladium-gold nanocatalysts could convert glycerol, a waste byproduct of biodiesel production, into high-value chemicals.

In scientific parlance, the data from the study produced a “volcano plot,” a graph with a sharp spike that depicts a “Goldilocks effect,” a “just right” balance of palladium and gold that is faster — about 10 times faster — at converting glycerol than catalysts of either metal alone.

In previous studies, the nanocatalysts were used in reduction reactions, chemical processes marked by the addition of hydrogen. In the latest tests on glycerol conversion, the nanocatalysts spurred an oxidation reaction, which involves adding oxygen.

“Oxidation and reduction aren’t just dissimilar; they’re often thought of as being in opposite directions,” Wong said.

You can read the full study here.